Skip to main content

E.L. Harp

thumbnail
Landslides are a widespread, frequent, and costly hazard in Seattle and the Puget Sound area of Washington State, USA. Shallow earth slides triggered by heavy rainfall are the most common type of landslide in the area; many transform into debris flows and cause significant property damage or disrupt transportation. Large rotational and translational slides, though less common, also cause serious property damage. The hundreds of landslides that occurred during the winters of 1995-96 and 1996-97 stimulated renewed interest by Puget Sound communities in identifying landslide-prone areas and taking actions to reduce future landslide losses. Informal partnerships between the U.S. Geological Survey (USGS), the City of...
Categories: Publication; Types: Citation; Tags: Landslides
thumbnail
The generation of seismically induced landslide depends on the characteristics of shaking as well as mechanical properties of geologic materials. A very important parameter in the study of seismically induced landslide is the intensity based on a strong-motion accelerogram: it is defined as Arias intensity and is proportional to the duration of the shaking record as well as the amplitude. Having a theoretical relationship between Arias intensity, magnitude and distance it is possible to predict how far away from the seismic source landslides are likely to occur for a given magnitude earthquake. Field investigations have established that the threshold level of Arias intensity depends also on site effects, particularly...
thumbnail
The moment magnitude (M) 7.9 Denali Fault earthquake in Alaska of 3 November 2002 triggered an unusual pattern of landslides and liquefaction effects. The landslides were primarily rock falls and rock slides that ranged in volume from a few cubic meters to the 40 million-cubic-meter rock avalanche that covered much of the McGinnis Glacier. Landslides were concentrated in a narrow zone ???30 km wide that straddled the fault rupture zone over its entire 300 km length. Large rock avalanches all clustered at the western end of the rupture zone where acceleration levels are reported to have been the highest. Liquefaction effects, consisting of sand blows, lateral spreads, and settlement, were widespread within susceptible...
Categories: Publication; Types: Citation; Tags: GSA Today
thumbnail
A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the...
thumbnail
The Greenville/Mt. Diablo earthquake sequence of January 24-26, 1980, was composed of Small and moderate earthquakes; the two largest shocks, on January 24 and 26, were of magnitudes (M) 5.5 and 5.6, respectively (Bolt and others, 1981). A 5.5 event is at the lower end of the range of earthquake magnitudes which cause observable ground failure (Youd and Perkins, 1978; Keefer, 1984). While none of the slope failures produced by the Greenville/Mt. Diablo earthquake sequence (GMDES) was larger than a few tens of cubic meters, they were both widespread in area (see map) and rich in variety, and thus have much to teach us about seismically induced slope failures in the San Francisco Bay area. This map depicts the location,...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.