Skip to main content

David R. DeWalle

thumbnail
Organic compounds are removed from the atmosphere and deposited to the earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably...
Categories: Publication; Types: Citation; Tags: Hydrological Processes
thumbnail
As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Atmospheric deposition, soils developed from bedrock, a natural bog, gas wells, and a ski area were all investigated as possible sources of water quality degradation for four streams on Laurel Hill in southwestern Pennsylvania where fish kills have been reported since 1960. An intensive study of the chemistry of atmospheric deposition, soil leachate, and stream water and fish populations was conducted on these basins during 1980–1981 with emphasis on dormant season periods with runoff from snowmelt and rain. Although bedrock geology was found to control the natural buffering capacity of these streams, only acid precipitation could be linked to sharp drops in pH and increases in total Al concentrations observed during...
thumbnail
Regression models to predict baseflow alkalinity from basin hydrogeology were developed and verified for headwater streams on the Laurel Hill anticline in southwestern Pennsylvania. Predicted baseflow alkalinities were then used to estimate sensitivity to acidification and presence of trout (Salvelinus fontinalis) populations for 61 headwater streams. Sensitivity classifications were verified by surveying trout populations. Geologic variables relating to the carbonate rock burial depth, extent of carbonate rock recharge areas, and length of stream channel flowing through effluent carbonate rock outcrops were much more useful in predicting baseflow alkalinity than areal extent of carbonate rocks. Baseflow alkalinity...
thumbnail
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear...
Categories: Publication; Types: Citation; Tags: Hydrological Processes
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.