Skip to main content

D.W. Kicklighter

thumbnail
Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP):...
Categories: Publication; Types: Citation; Tags: Oecologia
thumbnail
We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are ???3 Tg CH 4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH 4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Data on three major determinants of the carbon storage in terrestrial ecosystems are used with the process-based Terrestrial Ecosystem Model (TEM) to simulate the combined effect of climate variability, increasing atmospheric CO2 concentration, and cropland establishment and abandonment on the exchange of CO2 between the atmosphere and monsoon Asian ecosystems. During 1860-1990, modeled results suggest that monsoon Asia as a whole released 29.0 Pg C, which represents 50% of the global carbon release for this period. Carbon release varied across three subregions: East Asia (4.3 Pg C), South Asia (6.6 Pg C), and Southeast Asia (18.1 Pg C). For the entire region, the simulations indicate that land-use change alone...
Categories: Publication; Types: Citation
thumbnail
Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45??N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important...
thumbnail
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period,...
Categories: Publication; Types: Citation; Tags: Global Change Biology
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.