Skip to main content

Collins, Scott L

Desert grasslands, which are very sensitive to external drivers like climate change, are areas affected by rapid land degradation processes. In many regions of the world the common form of land degradation involves the rapid encroachment of woody plants into desert grasslands. This process, thought to be irreversible and sustained by biophysical feedbacks of global desertification, results in the heterogeneous distribution of vegetation and soil resources. Most of these shrub-grass transition systems at the desert margins are prone to disturbances such as fires, which affect the interactions between ecological, hydrological, and land surface processes. Here we investigate the effect of prescribed fires on the landscape...
Shrub encroachment into grass-dominated biomes is occurring globally due to a variety of anthropogenic activities, but the consequences for carbon (C) inputs, storage and cycling remain unclear. We studied eight North American graminoid-dominated ecosystems invaded by shrubs, from arctic tundra to Atlantic coastal dunes, to quantify patterns and controls of C inputs via aboveground net primary production (ANPP). Across a fourfold range in mean annual precipitation (MAP), a key regulator of ecosystem C input at the continental scale, shrub invasion decreased ANPP in xeric sites, but dramatically increased ANPP (>1000gm-2) at high MAP, where shrub patches maintained extraordinarily high leaf area. Concurrently, the...
Water is a key driver of ecosystem processes in aridland ecosystems. Thus, changes in climate could have significant impacts on ecosystem structure and function. In the southwestern US, interactions among regional climate drivers (e.g., El Ni�o Southern Oscillation) and topographically controlled convective storms create a spatially and temporally variable precipitation regime that governs the rate and magnitude of ecosystem processes. We quantified the spatial and temporal distribution of reduced grassland greenness in response to seasonal and annual variation in precipitation at two scales at the Sevilleta Long Term Ecological Research site in central New Mexico, using Normalized Difference Vegetation Index (NDVI)...
Global environmental change is altering temperature, precipitation patterns, and resource availability in aridland ecosystems. In 2006, we established a multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric N deposition, and more frequent occurrence of El Ni�o years on plant community dynamics in a northern Chihuahuan Desert grassland. Here we only report the results of warming and N addition from the first monsoon growing season prior to the imposition of the precipitation treatments. Our passive nighttime warming treatment increased daily minimum temperatures by 1.4?3.0 �C. Fertilization increased NO3N supply, as measured with Root Simulator Probes,...
thumbnail
Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.