Skip to main content

Carl O. Ostberg

thumbnail
Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate...
Categories: Publication; Types: Citation; Tags: PLoS ONE
thumbnail
Accurate species identification is vital to conservation and management of species at risk. Species identification is challenging when taxa express similar phenotypic characters and form hybrids, for example the endangered shortnose sucker (Chasmistes brevirostris) and Lost River sucker (Deltistes luxatus). Here, we developed 20 Taqman assays that differentiate these species (19 nuclear DNA and one mitochondrial DNA). Assays were evaluated in 160 young-of-the-year identified to species using meristic counts. Alleles were not fixed between species, but species were highly differentiated (F ST = 0.753, P < 0.001). The assays developed herein will be a valuable tool for resource managers.
thumbnail
Background Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects...
Categories: Publication; Types: Citation; Tags: BMC Genomics
thumbnail
Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat...
thumbnail
The largest populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) exist in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known spawning aggregations. Most Upper Klamath Lake juvenile sucker mortality appears to occur within the first year of life. Annual production of juvenile suckers in Clear Lake Reservoir appears to be highly variable and may not occur at all in very dry years. However, juvenile sucker survival is much higher in Clear Lake, with non-trivial numbers of suckers...
Categories: Publication; Types: Citation; Tags: Open-File Report
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.