Skip to main content

Aaron T. Pearse

thumbnail
The central Platte River Valley represents a key mid-latitude stopover This dataset supports a contemporary analysis of nocturnal roost selection for sandhill cranes staging along the Platte River during 2003-2007. We explored variation in selection for previously established characteristics of roost sites, including river channel width, vegetation height along the river bank, and distance to nearest disturbance feature. This analysis also included novel environmental factors (yearly estimates of corn near roost sites, nightly temperature, wind speed, and river discharge) and how they may interact with the more established characteristics.
thumbnail
The U.S. Fish and Wildlife Service has used spring aerial surveys to estimate numbers of migrating sandhill cranes (Grus canadensis) staging in the Platte River Valley of Nebraska, USA. Resulting estimates index the abundance of the midcontinent sandhill crane population and inform harvest management decisions. However, annual changes in the index have exceeded biologically plausible changes in population size (>50% of surveys between 1982 and 2013 indicate >±20% change), raising questions about nuisance variation due to factors such as migration chronology. We used locations of cranes marked with very-high-frequency transmitters to estimate migration chronology (i.e., proportions of cranes present within the Platte...
Categories: Publication; Types: Citation; Tags: Wildlife Society Bulletin
Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10...
thumbnail
Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances....
thumbnail
We conducted a 10-year study (1998–2007) of the Mid-Continent Population (MCP) of sandhill cranes (Grus canadensis) to identify spring-migration corridors, locations of major stopovers, and migration chronology by crane breeding affiliation (western Alaska–Siberia [WA–S], northern Canada–Nunavut [NC–N], west-central Canada–Alaska [WC–A], and east-central Canada–Minnesota [EC–M]). In the Central Platte River Valley (CPRV) of Nebraska, we evaluated factors influencing staging chronology, food habits, fat storage, and habitat use of sandhill cranes. We compared our findings to results from the Platte River Ecology Study conducted during 1978–1980. We determined spring migration corridors used by the breeding affiliations...
Categories: Publication; Types: Citation; Tags: Wildlife Monographs
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.