Skip to main content

Person

Kelly M Sanks

Student Trainee (Hydrology)

Lower Mississippi-Gulf Water Science Center

Email: ksanks@usgs.gov
Office Phone: 479-442-4888

Location
U of AR Res Ctr Blvd - Genesis Technology Incubator
700 West Research Center Blvd
Mail Stop 36
Fayetteville , AR 72701
US

Supervisor: Todd E Baumann
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (LiDAR) data representing beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The point data is the same as that in LAS (industry-standard binary format for storing large point clouds) files that were used to create a digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). References: Huizinga, R.J. and Wagner, D.M., 2019, Erosion monitoring along selected bank locations of the Coosa River in Alabama using terrestrial light detection and ranging...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry to approximately 1.3 kilometers (0.8 miles) offshore. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 m; multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and...
thumbnail
This dataset is a LAS (industry-standard binary format for storing large point clouds) dataset containing light detection and ranging (LiDAR) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 meters (m); multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. The LAS dataset was used to create a 10-m (32.8084 feet) digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area using the "LAS dataset to raster" tool in Esri ArcGIS, version 10.7. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS...
thumbnail
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to replace the aging dike and restore tidal flow to the estuary. To assist National Park Service land managers with restoration planning, the U.S. Geological Survey collected fourteen sediment cores from different ecosystems...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.