Skip to main content

Person

Molly Van Appledorn

Ecologist

Upper Midwest Environmental Sciences Center

Email: mvanappledorn@usgs.gov
Office Phone: 608-781-6323
Fax: 608-783-6066
ORCID: 0000-0002-8029-0014

Location
2630 Fanta Reed Road
La Crosse , WI 54603
US

Supervisor: Jennifer S Sauer
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
The shapefiles depict the 2D HEC-RAS hydraulic modeling domains used for the simulations described in the associated publication. Model domains were delineated in the HEC-RAS geometry editor to encompass river-valley bottoms and adjacent hillslopes of four river reaches of contrasting contributing area and morphology: Seneca Creek at Dawsonville, MD; Patapsco River at Woodstock, MD; Patuxent River at Unity, MD; and Little Gunpowder Falls at Laurel Brook, MD.
The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas were excluded from the valley bottom delineation.
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.