Skip to main content

Person

Jordan S Read

Chief, Data Science Branch

Office of the Chief Operating Officer

Email: jread@usgs.gov
Office Phone: 608-821-3922
ORCID: 0000-0002-3888-6631

Location
8505 Research Way
Middleton , WI 53562-3581
US

Supervisor: Joseph P Nielsen
thumbnail
This dataset provides timeseries data on water quality and quantity, as collected or computed from outside sources. The format is many tables with one row per time series observation (1 tab-delimited file per site-variable combination, 1 zip file per site). This compilation of data is intended for use in estimating or interpreting metabolism. Sites were included if they met the initial criteria of having at least 100 dissolved oxygen observations and one of the accepted NWIS site types ('ST','ST-CA','ST-DCH','ST-TS', or 'SP'). This dataset is part of a larger data release of metabolism model inputs and outputs for 356 streams and rivers across the United States (https://doi.org/10.5066/F70864KX). The complete release...
Tags: 007, 012, AK, AL, AR, All tags...
thumbnail
Abstract The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize...
Categories: Publication; Types: Citation
thumbnail
Observed water temperatures from 1980-2019 were compiled for 2,332 lakes in the US. These data were used as training, test, and error-estimation data for process-guided deep learning models and the evaluation of process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological Research Project, and digitized temperature records from the MN Department of Natural Resources. This dataset is part of a larger data release of lake temperature model inputs and outputs for these same lakes...
thumbnail
This dataset provides input data formatted for use in estimating metabolism. The format is tables of prepared time series inputs (1 tab-delimited file per site, in 1 zip file per site). This dataset is part of a larger data release of metabolism model inputs and outputs for 356 streams and rivers across the United States (https://doi.org/10.5066/F70864KX). The complete release includes: modeled estimates of gross primary productivity, ecosystem respiration, and the gas exchange coefficient; model input data and alternative input data; model fit and diagnostic information; site catchment boundaries and site point locations; and potential predictors of metabolism such as discharge and light availability.
Tags: 007, 012, AK, AR, Aerobic respiration, All tags...
Climate change is predicted to alter sport fish communities in Midwestern lakes, according to a new study that related water temperature to suitability for walleye and largemouth bass in more than 2,100 Wisconsin lakes.
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.