Skip to main content


Scott W Ator


Maryland-Delaware-D.C. Water Science Center

Office Phone: 443-498-5564
Fax: 443-498-5510
ORCID: 0000-0002-9186-4837

U.S. Geological Survey
5522 Research Park Drive
Baltimore , MD 21228

Supervisor: Mary K Foley
These data represent input and estimates from a medium-resolution (1:100,000 scale) NHDPlus SPAtially Referenced Regression on Watershed attributes (SPARROW) model for the Chesapeake Bay watershed (CBSS_v2). The model spatially correlates long-term mean annual suspended-sediment flux in 113 non-tidal streams to likely upland and stream-corridor sources, landscape factors affecting upland sediment transport and delivery to stream corridors, and fluvial and reservoir retention representing the early 2000 time period. The item COMID is a common related field between the data file and the spatial component (catchments) in NHDPlus version 1.0.
The U.S. Geological Survey’s (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate nutrient loads in streams across the Midwest Region of the United States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based water-quality load...
The CBTN_v5 and CBTP_v5 SPARROW models were developed to support inferences about causes of observed changes in nitrogen and phosphorus (respectively) fluxes in Chesapeake Bay tributaries between 1992 and 2012. Model inputs and outputs are included in three files, which are described below. Detailed documentation of the SPARROW modeling technique is available at
This data release contains mean-annual total nitrogen (TN) loads predicted by a SPARROW model for individual stream and shoreline reaches in the Chesapeake watershed as defined by NHDPlus, a 1:100,000 scale representation of stream hydrography built upon the National Hydrography Dataset (NHD) (Horizon Systems, 2010). Also included are the input variables required to execute the model, including landscape characteristics, nutrient inputs to land, and calibration data from water quality monitoring stations. Further details on model construction and results are described in Ator (2011,
Nitrogen and phosphorus losses from agricultural areas have impacted the water quality of downstream rivers, lakes, and oceans. As a result, investment in the adoption of agricultural best management practices (BMPs) has grown but assessments of their effectiveness at large spatial scales have been sparse. This study applies regional Spatially Referenced Regression On Watershed-attributes (SPARROW) models developed for the Midwest, Northeast, and Southeast regions of the United States to quantify regional effects of BMPs on nutrient losses from agricultural lands. These models were used because they account for specific BMPs in the prediction of instream nutrient loads. This data release accompanies the journal...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact