Skip to main content


Justin E Birdwell

Research Engineer

Central Energy Resources Science Center

Office Phone: 303-236-1534
Fax: 303-236-3202
ORCID: 0000-0001-8263-1452

Supervisor: Ofori N Pearson
Petroleum within unconventional source-rock reservoirs is hosted in organic matter and mineral pore space as well as in voids and microfractures. Recent work has shown that for source-rock reservoirs in the dry gas window, significant portions of methane (CH4), the main component of petroleum at elevated maturities, can be stored within fine organic matter porosity. However, within reservoirs at lower thermal maturities (e.g., peak oil or wet-gas conditions), the distribution and behavior of CH4 and the higher alkanes that comprise gas condensates across pore sizes is unclear, especially for fine pores with diameters <50 nm. Understanding CH4 within these settings provides insight for petroleum generation, movement,...
Inorganic compositions of flowback and co-produced waters from hydrocarbon extraction have been studied directly and through laboratory experiments that seek to replicate subsurface water-rock interaction. Here a broad analysis is made of compositions from the U.S. Geological Survey Produced Waters Database (v2.3) and leachates (water, hydrochloric acid, artificial brine) for 12 energy-resource related shales from across the United States. The database illustrates common ranges for 26 elements in 4 produced water types and enhanced solubility with increasing ionic strength is observed for Al, Ba, Fe, Li, Mn, Rb, Sr, and possibly 11 other elements. Differences are observed between laboratory leachates and produced...
Geological models for petroleum generation suggest thermal conversion of oil-prone sedimentary organic matter in the presence of water promotes increased liquid saturate yield, whereas absence of water causes formation of an aromatic, cross-linked solid bitumen residue. To test the influence of exchangeable hydrogen from water, organic-rich (22 wt.% total organic carbon, TOC) mudrock samples from the Eocene lacustrine Green River Mahogany zone oil shale were pyrolyzed under hydrous and anhydrous conditions at temperatures between 300 and 370°C for 72 hrs. Petrographic approaches including optical microscopy, reflectance, Raman spectroscopy, and scanning electron and transmission electron microscopy, supplemented...
This data release contains geochemical and spectroscopic laboratory results associated with the journal article "Middle-Late Holocene paleolimnological changes in central Lake Tanganyika: Integrated evidence from the Kavala Island Ridge (Tanzania)". Data include bulk organic geochemistry, organic stable carbon isotope, and infrared spectroscopic analyses. Location for LT-TANG17-9B-1U-1: latitude: -5.952900, longitude: 29.639700. Coring site is located ~ 14 km offshore in ~ 420 m of water.
High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter (SOM) is widely utilized in the geosciences for evaluation of microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, despite thousands of studies which have incorporated SEM approaches, the inability of SEM to differentiate SOM types has hampered the pace of scientific advancement. In this study, we show that SEM-cathodoluminescence (CL) properties can be used to identify and characterize SOM at low thermal maturity conditions. Eleven varied mudstone samples with a broad array of SOM types, ranging from the Paleoproterozoic to...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact