Skip to main content

Person

Daniel M Wagner

Hydrologist

Lower Mississippi-Gulf Water Science Center

Email: dwagner@usgs.gov
Office Phone: 479-442-4888
Fax: 479-442-4066
ORCID: 0000-0002-0432-450X

Location
U of AR Res Ctr Blvd - Genesis Technology Incubator
700 West Research Center Blvd
Mail Stop 36
Fayetteville , AR 72701
US

Supervisor: Wade H Kress
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (LiDAR) data representing beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The point data is the same as that in LAS (industry-standard binary format for storing large point clouds) files that were used to create a digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected...
thumbnail
"NewEngland_pkflows.PRT" is a text file that contains results of flood-frequency analysis of annual peak flows from 186 selected streamflow gaging stations (streamgages) operated by the U.S. Geological Survey (USGS) in the New England region (Maine, Connecticut, Massachusetts, Rhode Island, New York, New Hampshire, and Vermont). Only streamgages in the region that were also in the USGS "GAGES II" database (https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml) were considered for use in the study. The file was generated by combining PeakFQ output (.PRT) files created using version 7.0 of USGS software PeakFQ (https://water.usgs.gov/software/PeakFQ/; Veilleux and others, 2014) to conduct flood-frequency...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). References: Huizinga, R.J. and Wagner, D.M., 2019, Erosion monitoring along selected bank locations of the Coosa River in Alabama using terrestrial light detection and ranging...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry to approximately 1.3 kilometers (0.8 miles) offshore. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 m; multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and...
thumbnail
A bathymetric survey of Blue Mountain Lake, Arkansas, was conducted in May 2017 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for sonar surveys similar to those described by Wilson and Richards (2006). Point data from the bathymetric survey were merged with point data from an aerial LiDAR survey conducted in December 2010 for the U.S. Army Corps of Engineers (USACE), Little Rock District. From the combined point data, a terrain dataset (a type of triangulated irregular network, or TIN model) was created in Esri ArcGIS for the lakebed within the extent of pool elevation 420 feet above the North American Vertical Datum of 1988 (NAVD88). Products included...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.